Estimating long-term chemical denudation rates on soil-mantled hillslopes using cosmogenic nuclides: Effects of time-varying erosion

نویسندگان

  • Ken L. Ferrier
  • James W. Kirchner
چکیده

Many biogeochemical and Earth surface processes depend critically on chemical weathering. The immediate products of chemical weathering are present as solutes and secondary minerals in groundwater, soils, and streams, and form the nutritional foundation for terrestrial biogeochemistry. Chemical weathering also contributes to physical erosion by weakening bedrock and producing easily erodible regolith, and as the primary long-term sink for atmospheric CO2 it modulates Earth’s long-term climate via the greenhouse effect. Long-term chemical denudation rates on soil-mantled hillslopes can be estimated from cosmogenic radionuclide (CRN) concentrations in soil-borne quartz and the enrichment of a chemically inert tracer in soil relative to its parent bedrock. This technique inherently assumes steady physical erosion over the timescale of CRN accumulation. Here we assess how time-varying physical erosion rates affect the accuracy of this technique, using a numerical model for chemical denudation rates in soils. In this model, bedrock supplies fresh minerals to the soil at a rate that decreases exponentially with increasing soil thickness, and Preprint submitted to Elsevier 29 November 2007 mineral dissolution rates are proportional to soil mineral concentrations. Our modeling results suggest that CRN-based estimates of chemical denudation rates closely resemble actual chemical denudation rates averaged over the timescale of CRN accumulation, even during large-amplitude and long-period oscillations in physical erosion rates. For example, this model predicts that when physical erosion rates fluctuate sinusoidally by 50% of their mean over any period in time, CRNbased estimates of chemical denudation rates should differ from actual chemical denudation rates by less than 15%. Our model also implies that chemical denudation rates should approach zero both when physical erosion rates approach zero (because soluble minerals become depleted in the soil) and when physical erosion rates approach the maximum soil production rate (because soil thickness approaches zero). Modeled chemical denudation rates thus reach a maximum at intermediate physical erosion rates. If this relationship holds in nature, it implies that in rapidly eroding regions, further increases in physical erosion rates (e.g., due to increases in tectonic uplift rates) may not necessarily lead to faster chemical denudation on soil-mantled hillslopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of long-term denudation rates in carbonate landscapes using in situ-produced 36Cl cosmogenic nuclide

ecent progresses have been made in the quantification of denudation of eroding landscapes and its links with topography. Despite these advances, data is still sparse in carbonate terrain, which covers a significant part of the Earth’s surface. We can now measure in situ-produced cosmogenic nuclides concentrations in various near-surface materials, allowing accurate quantification of the rates o...

متن کامل

The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment

The study of a sample of river sediment enables the determination of spatially averaged denudation rates that provide an exceptional perspective on erosion and weathering processes that have taken place within a landscape. These measurements are done with in-situ produced cosmogenic nuclides (e.g. Be, Al), mostly in quartz from alluvial sediment. Cosmogenic nuclides are produced when secondary ...

متن کامل

Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance

Quantifying long-term rates of chemical weathering and physical erosion is important for understanding the long-term evolution of soils, landscapes, and Earth’s climate. Here we describe how long-term chemical weathering rates can be measured for actively eroding landscapes using cosmogenic nuclides together with a geochemical mass balance of weathered soil and parent rock. We tested this appro...

متن کامل

Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil-mantled hillslopes

Article history: Many biogeochemical and E Received 29 November 2007 Received in revised form 19 May 2008 Accepted 21 May 2008 Available online 4 June 2008 Editor: R.W. Carlson

متن کامل

Cosmogenic nuclides, topography, and the spatial variation of soil depth

If the rate of bedrock conversion to a mobile layer of soil depends on the local thickness of soil, then hillslopes on uniform bedrock in a landscape approaching dynamic equilibrium should be mantled by a uniform thickness of soil. Conversely, if the depth of soil varies across an actively eroding landscape, then rates of soil production will also vary and, consequently the landscape will not b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007